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Mechanism of hypersensitive transport in tilted sharp ratchets
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The noise-flatness-induced hypersensitive transport of overdamped Brownian particles in a tilted ratchet
system driven by multiplicative nonequilibrium three-level Markovian noise and additive white noise is con-
sidered. At low temperatures, the enhancement of current is very sensitive to the applied small static tilting
force. It is established that the enhancement of mobility depends nonmonotonically on the parameters~flatness,
correlation time! of multiplicative noise. The optimal values of noise parameters maximizing the mobility are
found.

DOI: 10.1103/PhysRevE.68.0211XX PACS number~s!: 05.40.2a, 02.50.2r, 05.60.Cd
e
iv
ig
i-
ea

i

h
w

od
-
,
ct

e

y
o

or

es
he
u

ua
e
oi
ro

he
an

s
ns

p
se
m

m
of
ce of
-
act

ms,

ha-
at-
re-

arp
n-

by
that
al-

et,
dic

nal

i-

ace

n
ov-
g

the
Recently, noise-induced hypersensitivity to small tim
dependent signals in nonlinear systems with multiplicat
noise has been the topic of a number of physical invest
tions@1–4#. A motivation in this field has come from numer
cal, analytical, and experimental studies of a nonlin
Kramers oscillator with multiplicative white noise@1,4#. Un-
der the effect of intense multiplicative noise, the system
able to amplify an ultrasmall deterministic ac signal~of the
order of, e.g., 10220) up to the value of the order of unity@1#.
Afterwards, a related phenomenon such as noise-induced
persensitive transport was found in some other systems
multiplicative dichotomous noise@2,3#. Noise-induced hy-
persensitive transport was also established in a phase m
i.e., dw/dt5a2b sinw, with a strong symmetric multiplica
tive colored noise. It was shown that in such a system
macroscopic flux~current! of matter appears under the effe
of ultrasmall dc driving@2#. It is important to notice that the
physical mechanism underlying the phenomenon of hyp
sensitive transport presented in Refs.@2,3# is based on the
assumption that the periodic potential is smooth. It is eas
see that in the case of a periodic sharp potential, the ab
mechanism cannot bring forth any hypersensitive transp

Theoretical investigations@5–9# indicate that noise-
induced nonequilibrium effects are sensitive to noise flatn
which is defined as the ratio of the fourth moment to t
square of the second moment of the noise process. Altho
its significance is obvious, the role of the flatness of fluct
tions has not been researched to any significant degre
date. In the present paper, we assume the multiplicative n
to be a zero-mean trichotomous Markovian stochastic p
cess@10#. It is remarkable that for trichotomous noises, t
flatness parameterw, contrary to the cases of the Gaussi
colored noise (w53) and symmetric dichotomous noise (w
51), can have any value from 1 tò. The flatness as an
extra degree of freedom~in comparison with dichotomou
noise! can prove useful when modeling actual fluctuatio
e.g., thermal transitions between three configurations
states. This is the reason why we choose in the phase s
of possible nonequilibrium models the trichotomous noi
Although both dichotomous and trichotomous processes
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be too rough approximations of the actual nonequilibriu
fluctuations, the latter is more flexible, including all cases
dichotomous processes and, as such, revealing the essen
its peculiarities. A further virtue of the models with trichoto
mous noise is that they constitute a case admitting ex
analytical solutions for some nonlinear stochastic proble
such as colored-noise-induced transitions@10# and reversals
of noise-induced flow@9#.

The main purpose of this paper is to establish a mec
nism of hypersensitive transport, demonstrating that the fl
ness of multiplicative noise can generate hypersensitive
sponse to the small external static force in a tilted sh
ratchet system. We will show that in the region of hyperse
sitive response, the value of mobility can be controlled
means of thermal noise. For low temperatures, we find
the mobility exhibits resonant behavior at intermediate v
ues of the parameters of the multiplicative noise~flatness,
correlation time!.

We consider an overdamped multinoise tilted ratch
where particles move in a one-dimensional spatially perio
potential of the formV(x,t)5V(x)Z(t), where Z(t) is a
trichotomous process@10# and V(x) is a piecewise linear
function, which has one maximum per period. The additio
force consists of thermal noise with temperatureD, and an
external static forceF. The system is described by the d
mensionless Langevin equation

dX

dt
5Z~ t !h~X!1F1j~ t !, h~x![2

dV~x!

dx
, ~1!

whereV(x)5Ṽ( x̃)/Ṽ0 ,Ṽ( x̃) is a spatially periodic function
with period L̃, andṼ05Ṽmax2Ṽmin . The usual dimension-
alized physical variables are indicated by tildes and the sp
and time coordinates readX5X̃/L̃ and t5 t̃ Ṽ0 /kL̃2 with k

being the friction coefficient;F̃5Ṽ0F/L̃ is a constant exter-
nal force. The thermal noise satisfieŝj(t)&50 and
^j(t1)j(t2)&52Dd(t12t2). Regarding the random functio
Z(t), we assume it to be a zero-mean trichotomous Mark
ian stochastic process@10# which consists of jumps amon
three valuesz5$1,0,21%. The jumps follow in time accord-
ing to a Poisson process, while the values occur with
stationary probabilitiesPs(1)5Ps(21)5q and Ps(0)51
©2003 The American Physical Society05-1
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22q. In a stationary state, the fluctuation process statis
^Z(t)&50 and ^Z(t1t)Z(t)&52qexp(2nt), where the
switching raten is the reciprocal of the noise correlatio
time tc51/n. The trichotomous process is a special case
the kangaroo process@5# with a flatness parameterw
5^Z4(t)&/^Z2(t)&251/(2q). At large flatnesses, our tri
chotomous noise essentially coincides with the three-le
noise used by Bier@6# and Elston and Doering@7#.

The master equation corresponding to Eq.~1! reads

]

]t
Pn~x,t !52

]

]x
@GnPn~x,t !#1(

m
UnmPm~x,t !, ~2!

whereGn5zn h(x)1F2D ]x andPn(x,t) is the probability
density for the combined process (x,zn ,t), n,m51,2,3, z1
51, z250, z3521, andUik5n@q1(123q)d i22d ik#. The
stationary currentJ5(nj n(x) is then evaluated via the cur
rent densities j n(x)5@znh(x)1F2D ]x#Pn

s(x), where
Pn

s(x) is the stationary probability density in the state (x,zn).
To calculate the stationary probability density in thex space,
P(x)5(nPn

s(x), and the stationary current,J5const, six
conditions are imposed on the solutions of Eq.~2!, namely,
the conditions of periodicityPn

s(x)5Pn
s(x11), n51,2,3,

and normalization ofPn
s(x) over the period intervalL51 of

the ratchet potentialZ(t)V(x), which read *0
1P1

s(x)dx
5*0

1P3
s(x)dx5q and*0

1P2
s(x)dx5122q.

To derive an exact formula forJ, we assume that the
potential Z(t)V(x)5Z(t)V(x21) in Eq. ~1! is piecewise
linear ~sawtoothlike! and its asymmetry is determined by
parameterdP(0,1), with V(x) being symmetric whend
51/2. A schematic representation of the three configurati
assumed by the ‘‘net potentials’’Vn(x)5znV(x)2Fx asso-
ciated with the right hand side of Eq.~1! is shown in Fig. 1.
Regarding the symmetry of the dynamic system~1!, we no-
tice thatJ(2F)52J(F) andJ(F,d)5J(F,12d). Thus we
may confine ourselves to the cased<1/2 andF>0. Obvi-
ously, for F50, the system is effectively isotropic and n
current can occur. In the case of zero temperature, both
noise levelszn51,3561 in Eq. ~1!, whereF<min$1/d,1/(1
2d)%, give zero flux. However, if one allows switching be
tween the three dynamic lawsVn(x), n51,2,3, the resulting
motion will have a net flux which can be much greater th

FIG. 1. The mechanism of hypersensitive transport. The li
depict the net potentialsVn(x)5znV(x)2Fx with z151, z250,
and z3521. A particle cannot move of its own accord along t
potentialsV1 andV3. However, if one allows switching between th
potentialsVn , n51,2,3, the particle will move downhill along th
trajectory 1:2:3:4:6.
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the flux by the dynamic lawV252Fx. If the rate of reach-
ing the minimal energy in each well considerably excee
the switching raten, the leading part of the net flux is
achieved in the following way: a particle locked in the p
tential minimum 1 switches to point 2, then slowly moves
point 3, switches to point 4~or to 5 with equal probability!,
and rapidly slides down to point 6~or from 5 back to 1!, etc.
~see Fig. 1 and cf. Ref.@11#!. In this case, hypersensitiv
transport is possible and can be intuitively understood. T
described scheme is valid only in the absence of ther
noise. Otherwise, a particle is able to pass by a therm
activated escape across the potential barriers in both d
tions. However, it predominantly moves to the right and h
persensitive transport still occurs~at least at sufficiently low
temperatures!. As the ‘‘force’’ h(x)52dV(x)/dx is piece-
wisely constant,h(x)5h151/d for xP(0,d)(mod1) and
h(x)5h2521/(12d) for xP(d,1) (mod1), Eq.~2! splits
up into two linear differential equations with constant coe
ficients for the two vector functionsPi

s(x)5(P1i
s ,P2i

s ,P3i
s )

( i 51,2) defined on the intervals (0,d) and (d,1), respec-
tively. The solution reads

Pni
s ~x!5JAn1 (

k51

5

CikAnike
l ikx, ~3!

whereCik are constants of integration, the constantsAn and
Anik are given byA15A35qJ/F, A25(122q)J/F, Anik

5(Dl ik2F)@Dl ik
2 2(F2znhi)l ik2n# for n51,3, A2ik

52hi
2l ik2(A1ik1A3ik), and$l ik ,k51, . . . ,5% is the set of

roots of the algebraic equation

D3l i
523D2Fl i

41D~3F222Dn2hi
2!l i

31F~4Dn2F2

1hi
2!l i

21n~Dn22F212qhi
2!l i2n2F50. ~4!

Eleven conditions for the ten constants of integration of E
~3! and for the probability currentJ can be determined at th
points of discontinuity, by requiring continuity, periodicity
and normalization ofPi

s(x). This procedure leads to an inho
mogeneous set of 11 linear algebraic equations. Now, an
act formula for the currentJ can be obtained as a quotient
two determinants of the 11th degree. The exact formula,
ing complex and cumbersome, will not be presented h
however, it will be used to find~i! the dependence of th
currentJ on the tilting forceF and the dependence of th
mobility m5J/F on the flatnessw51/(2q), which are dis-
played in Figs. 2 and 3, respectively, and~ii ! the asymptotic
limits of the currentJ at low temperature and small extern
force.

Figure 2 shows the induced currentJ as a function of the
external forceF for two different values of temperature an
for three different values ofd with fixed w52.5 andn58. In
this figure, one also observes the hypersensitive respon
very low forcing, which apparently gets more and more p
nounced as the thermal noise strengthD decreases. For the
caseD50,d50.5, the results of Monte Carlo simulations
the currentJ5J(F) are also presented. The tendency app
ent in Fig. 2, namely, a decrease in the mobility for very lo

s
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MECHANISM OF HYPERSENSITIVE TRANSPORT IN . . . PHYSICAL REVIEW E68, 011105 ~2003!
forcing as the asymmetry of the potential grows, is also va
for large asymmetries, e.g., whend,0.05.

To obtain more insight, we shall now study som
asymptotic limits of the current.

At the fast-noise limit, we allown to become large, hold
ing all the other parameters fixed. Thus, at very high frequ
cies of colored fluctuations, the system is under the influe
of the average fluctuating potential. In then→` limit, the
current is then given by

J5F1O~n21/2!.

The form of the leading term of the currentJ is not confined
to the fast-noise limit. It is also valid for the asymptotic lim
of a high temperature,D@1, and in the case of a larg
‘‘load’’ force F (F→`, all the other parameters fixed!.

FIG. 2. The currentJ vs applied forceF in the region of the
hypersensitive response. The flatness parameter equalsw52.5 and
the switching raten58. Solid straight line:D50, d50.5. Dotted
line: D5431028, d50.5. Dashed line:D5431028, d50.2.
Solid curved line:D5431028, d50.05. The filled dots on the
solid straight line are obtained by means of Monte Carlo simu
tions. Notice the jump of the current from the zero level to the so
line corresponding to the infinite derivative ofJ(F) at F50.

FIG. 3. The mobility m5J/F vs the flatness parameterq
51/(2w) at d51/2, D5431028, andF51025. The curves com-
puted from the exact formula for the currentJ correspond to the
values ofn58/3, n51, n58, n50.1, n5100 from top to bottom.
The nonmonotonic sequence of the values ofn stems from the
bell-shaped dependenceJ5J(n). Note that the maximum of the
mobility lies at q51/6 andn58/3. The dots were computed b
means of the asymptotic formula~7!.
01110
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At the long-correlation-time limitn→0, Eqs. ~2! for
P1

s(x),P2
s(x), andP3

s(x) are decoupled and the total curre
is given by the average of each current for the correspond
potential configurations. In the case of the symmetric pot
tial d51/2, the currentJ saturates at the value

J5~122q!F

1
2q~42F2!2 sinh~F/2D !

16DFcosh
1

D
2cosh

F

2DG2F~42F2! sinh
F

2D

.

For F,2, we can see that the currentJ tends to (122q)F
asD→0. This result is consistent with the physical intuitio
that the probability densitiesP1

s(x) andP3
s(x) ared distrib-

uted at deterministic stationary states~minima of potentials!:
the random variableZ takes values61 for a sufficiently long
time to allow the deterministic stationary state to be form

In the case of zero temperatureD50 and symmetric po-
tential d51/2, one finds from the exact formula that on th
assumptionF,2 the current equals

J5nF
A1C22C1A2

B1C22B2C1
, ~5!

where Ai5F„a i@F2(42F2)h i #22(122q)…, Bi5(n
116q)Ai132q(122q)(2a i1F), Ci5qAi12(1
22q)@4h i1Fq12a i(11Fh i)#, h i5F21(42F2)21

„F2

24q22« i@4q21F2(122q)#1/2
…, a i5tanh(nh i /4), i 51,2,

«151, «2521.
Thus, at the low-force limitF→0, the current will satu-

rate at the finite value

lim
F→0

J5Ja5
32nq~122q!

~n18!2
. ~6!

As J(F50)50, the hypersensitive response is extrem
pronounced in this case, with the current picking up with
infinite derivative atF50 ~see also Fig. 2!. The asymptotic
currentJa exhibits a bell-shaped~resonance! form asn or q
is varied. The optimal correlation timetm that maximizes the
current equals 1/8, and the optimal flatnesswm51/(2qm)
52. It is remarkable that in the case of a dichotomous no
q51/2, the hypersensitive response disappears and in
low-forcing limit the leading-order term of the current is pr
portional toF:J'nF(n112)/(n18)2.

At the low-forcing limit F!1, a natural way to investi-
gate the behavior ofJ is to apply small-F perturbation ex-
pansions. A stationary solution of Eqs.~3! and ~4! with D
Þ0, d51/2 is constructed in terms of integer powers ofF.
The current can be expressed asJ5Fm11F2m21•••. We
shall calculate the leading term of the currentFm1. Notably,
the analysis of this section is valid for the values of para
eters satisfying the conditionF,(2qnD)1/2. This condition
results from the assumption that the higher-order terms in
expansion of the roots of Eq.~4! are asymptotically smalle
than the lower-order terms held in the calculation. At su
ciently small temperatureD!min$1,2qn,8q/n%, the formula
for the leading-order termFm1 of the current is

-
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J'Fm15
8~122q!F

~n18!2
A2qn

D
1FG. ~7!

Here the symbolG stands for the terms which do not in
crease asD→0. An extreme sensitivity of the mobilitym to
thermal noise can be seen from the factorD21/2 in Eq. ~7!
that increases unboundedly asD→0. It can be seen easil
that the functional dependence of the mobility on the flatn
w and on the correlation timetc is of a bell-shaped form
The mobility m1 reaches a maximum at the flatnesswm53
and at the correlation timetm53/8. The dependence of th
mobility m5J/F on the parametersq andn for a fixed force
value F51025 and for a fixed temperatureD5431028 is
shown in Fig. 3. We can see that the asymptotic formula~7!
is in excellent agreement with the exact results.

Let us note that the sufficient conditionF,A2qnD has a
distinct physical meaning: the characteristic distance of th
mal diffusion AD/n is larger than the typical distanceF/n
for the particle driven by the deterministic forceF in the
statez50 of the trichotomous noise. Let us look at the lat
statement more closely on the assumption thatn!1. For this
assumption within the interval (0,1), the probability dist
butionsPn

s(x), n51,3, are, evidently, concentrated atx50
~or x51/2). Next, we shall consider the trajecto
(1:2:3:4:6) inFig. 1. The particles locked at the potenti
minimum 1 (x5d51/2) will go at the initial timet50 to
point 2, wherez50. The first time when the noise turns
eitherz51 or z521 is denoted byt0. As the time of move-
ment from 4 to 6 is much less thant0, it is easy to find that
during the time interval (0,t0) the center of mass has shifte
by

Dx'
1

2ApDt0
E

0

Ft0
expH 2

~x2Ft0!2

4Dt0
J dx'

FAt0

2ADp
.

In the case of a trichotomous noise, the probabilityW(t)
that in a certain time interval (0,t) the transitionsz50→z
561 do not occur is given byW(t)5exp(22qnt). The
probability that the transitionz50 → z521 occurs within
the time interval (t,t1dt) is qndt. Consequently,

^Dx&5qnE
0

`

e22qnt0Dxdt0'
F

8A2qnD
.

Considering that the average number of transitions per
of time into the statez50 is 2qn(122q), we obtainJ
52qn(122q)^Dx&'F(122q)A2qn/8AD. Thus, we have
obtained an earlier result, namely, Eq.~7! for n!1. Formula
~7! is one of our main results. Note that the above proced
can be repeated in a straightforward but tedious way
more complicated cases involving asymmetric potentials
potentials with several extrema per period. The phenome
is robust enough to survive a modification of the multiplic
tive noise. The key-factor is the noise flatness, indicat
how long the noise level dwells on the statez50. If the
01110
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flatness parameter is greater than 1, the effect does exist
example, the multiplicative noise can also be a Gaussian
tionary process.

It is quite remarkable that the above results are also
plicable for amplifying adiabatic time-dependent signals, i
signals of much greater periods than the characteristic t
of establishing a stationary distribution, even in the case o
small input signal-to-noise ratioF/AD!1.

We emphasize that our mechanism of hypersensi
transport is of a qualitatively different nature from a recen
found effect, where a noise-induced enhancement of the
rent of Brownian particles in a tilted ratchet system has a
been established@2,3#. In the latter scenario, a system with
periodic smooth potential exhibits hypersensitivity under
effect of multiplicative dichotomous noise because of noi
induced escape through fixed points of the dynamics. T
occurs because the stable and unstable fixed points of
alternative dynamics, which coincide in the absence of
tilt F, are shifted apart by a small force~see also Ref.@11#!.
In the mechanism reported here, we have a sharp peri
potential: the stable and unstable fixed points of the dyna
ics coincide also for any small tilt. The crossing of the loc
tion of the fixed points is achieved by a combined influen
of the flatness of the multiplicative noise and a small
forcing.

In a general case, if the potential is smooth and the fl
ness of multiplicative noise is greater than 1, both mec
nisms play an important role and should be taken into
count. Our calculations show that the factorFAn/D in Eq.
~7! is generated by thermal diffusion in the statez50, while
the circumstance that the potential is sharp has no effec
this factor. On the other hand, for adiabatic switching, t
mechanism described in Ref.@2# generates the currentJ
;nF/AD. Consequently, our mechanism for sufficient
small switching rates induces hypersensitive transport m
effectively than the one proposed by Ginzburg and Pustov
This conclusion is in agreement with the results of Ref.@2#,
presenting numerical simulations of the phenomenon of
persensitive transport based on a phase model with the
tiplicative colored Gaussian noise (w53). It is established
that in the case of low switching rates, the transport for
Gaussian noise appears to be more effective than for dich
mous stimuli. Regrettably, the authors of Ref.@2# did not
consider the role of noise flatness and the physics of
discrepancy.

In conclusion, the reported mechanism of generating
persensitive transport by the flatness of multiplicative no
is of general relevance for many physical, biological, a
chemical systems, and may provide another possibility
control signal amplification. The sensitivity of system r
sponse to small input signals can be either enhanced or
pressed by changing the noise parameters~flatness, correla-
tion time, temperature!. In agreement with Ref.@12#, we
believe that the phenomenon proposed may also shed s
light on the ability of biological systems to detect weak s
nals in a noisy environment.

We acknowledge partial support by the Estonian Scie
Foundation through Grant Nos. 4042 and 5662 and by
International Atomic Energy Agency through Grant N
12062.
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